Master on Physics and Engineering on Fusion Plasmas Introductory Atomic and Molecular Physics. Problems (4). - 1. Find the eigenfunctions of the harmonic oscillator Hamiltonian in the momentum representation. - 2. Consider a system with two possible values of the angular momentum: 0 and $\sqrt{2}\hbar$. $\{|j\,m>\}$ is a basis of simultaneous eigenvectors of J^2 and J_z that fulfill: $$J_{\pm}|j m> = \hbar \left[j(j+1) - m(m\pm 1)^{1/2} |j m\pm 1> \right]$$ $J_{+}|j j> = J_{-}|j - j> = 0$ - (a) Write the simultaneous eigenfunctions of J_x and J^2 in terms of the basis vectors $|j m\rangle$. - (b) The system is in a state $|\Psi\rangle$ of the form: $$|\Psi> = \alpha |11> +\beta |10> +\gamma |1-1> +\delta |00>$$ - (i) Find the probability of obtaining $2\hbar^2$ and \hbar in a simultaneous measurement of J^2 and J_x . - (ii) Evaluate $\langle J_z \rangle$ and the probability of obtaining in a measurement each value of this observable. - 3. Find the unitary matrix S that diagonalizes the matrix representation of J_x in the basis of simultaneous eigenvectors of J^2 and J_z with j = 1/2. Compare S with the matrix representation of a rotation about the Y axis. Obtain the matrix representations of J_y , J_z and J^2 in the new basis. - 4. (a) Show that a function $f(\mathbf{r})$ is transformed into $$U_R f(m{r}) \simeq \left[1 - rac{\mathrm{i}}{\hbar} m{\phi} \cdot m{L}\right] f(m{r})$$ by a rotation of the coordinate system, where ϕ is a vector along the rotation axis whose modulus is the infinitesimal rotation angle. (b) Show that an infinitesimal rotation of the coordinate system transform a quantum mechanical operator F into $$UFU^{\dagger} \simeq F - \frac{\mathrm{i}}{\hbar} \boldsymbol{\phi} \cdot [\boldsymbol{L}, F]$$ with $$U = \left[1 - \frac{\mathrm{i}}{\hbar} \boldsymbol{\phi} \cdot \boldsymbol{L}\right]$$. - 5. (a) Show that the Clebsch-Gordan coefficient $C(j_1, j_2, j, m_1, m_2, m)$ vanishes when $m_1 + m_2 \neq m$. - (b) When the angular momentum vectors j_1, j_2 of two independent particles are added one obtains: $$m_{\text{max}} = (m_1 + m_2)_{\text{max}}; \ j_{\text{max}} = j_1 + j_2$$ Which is the value of j_{\min} ? - 6. Build up a complete series of eigenfunctions of J^2 and J_z for a system of two independent particles with spin 1/2 as linear combinations of products of the corresponding functions for each particle. - 7. Find the eigenfunctions of J^2 and J_z for a system of two independent particles with j=1.