Master on Physics and Engineering on Fusion Plasmas Introductory Atomic and Molecular Physics. Problems (3).

1. Show that the fundamental equation of the classical mechanics:

$$\boldsymbol{F} = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}$$

is satisfied by the expectation values of the corresponding quantum mechanical operators.

2. Show that the momentum eigenfunctions for a one-dimensional free particle are:

$$u_p = h^{-1/2} \exp\left(ipx/\hbar\right)$$

Hint: use the definition of the Dirac delta function:

$$\delta(\sigma) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}x e^{\mathrm{i}\sigma x}$$

and assume that the continuum wavefunctions are normalized as:

$$\int u_{f'}^* u_f \mathrm{d}^3 \boldsymbol{r} = \delta(f' - f)$$

- 3. Let < A > be the expectation value of a time-independent operator. Using the time-dependent Schrödinger equation, write down the equation for $\frac{d < A >}{dt}$. Consider the particular cases of $< x_k >$ and $< p_k >$.
- 4. Let A, B and H be operators on E_2 and $\{|1>, |2>\}$ an orthonormal basis set of this space. One has:

$$A|1>=m|1>$$
; $B|1>=|2>$; $H|1>=iE|2>$
 $A|2>=-m|2>$; $B|2>=|1>$; $H|2>=-iE|1>$

- (a) Write down these operators in terms of bras and kets.
- (b) Find the commutation rules of these operators.
- (c) Find the matrix representation of these operators in the basis set of eigenestates of the operator B.
- 5. Let $\{|u_i\rangle\}$ (i=1,2,3) be an orthonormal basis of \mathbb{R}^3 . The matrices associated to the operators H and B are:

$$\mathbf{H} = \hbar\omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \mathbf{B} = b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Show that [H, B] = 0 and find a basis of simultaneous eigenvectors of H and B. Evaluate $[H, B^2]$ and $[H^2, B]$. Are $\{H\}$, $\{B\}$, $\{H, B\}$, $\{H^2, B\}$ complete sets of commuting observables?

6. Consider the set of orthonormal vectors $\{|u_i\rangle\}$ (i=1,2,3) and the operators L_z and S defined through:

$$L_z|u_1> = |u_1>; L_z|u_2> = 0; L_z|u_3> = -|u_3>$$

 $S|u_1> = |u_3>; S|u_2> = |u_2>; S|u_3> = |u_1>$

Write down the matrices for the operators L_z , L_z^2 , S and S^2 in this basis. Are $\{L_z^2, S\}$ a complete set of commuting observables?

- 7. Consider the ladder operators $L_{\pm} = L_x \pm iL_y$. Show that:
 - (a) $[L_z, L_+] = L_+$; $[L_z, L_-] = -L_-$.
 - (b) $L^2 = L_-L_+ + L_z + L_z^2 = L_+L_- L_z + L_z^2$.
- 8. Consider the set $\{u_{jm}\}$ of the simultaneous eigenfunctions of L_z and L^2 . Prove that $L_{\pm}u_{jm}$ are also eigenfunctions of L_z and L^2 .
- 9. The ladder operators J_{\pm} fulfill:

$$J_{\pm}u_{jm} = c_{\pm}u_{jm\pm1}$$

Find the coefficients c_{\pm} which lead to normalized functions $u_{jm\pm 1}$.

10. Write down the matrix representations of the ladder operators J_{\pm} in the basis set of simultaneous eigenfunctions of J^2 and J_z with j = 1/2.