European Master on Nuclear Fusion Science and Engineering Physics. Introductory Atomic and Molecular Physics. Problems (1).

1. A particle of mas m moving in one dimension is described by the wave packet:

$$\Psi(x,t) = \int_{-\infty}^{+\infty} A(k) \exp\left[i(kx - \omega t)\right] dk$$

with

$$A(k) = C \exp\left[-a^2(k - k_0)^2\right]$$

(a) Taking $L = k - k_0$, show that $\Psi(x, t)$ is of the form:

$$C \int_{-\infty}^{+\infty} dL \exp\left[-\alpha L^2 - 2\beta L - \gamma\right]$$

(b) Using

$$\int_{-\infty}^{+\infty} du \exp(-cu^2) = \sqrt{(\pi/c)},$$

express $\Psi(x,t)$ as a function of α , β and γ .

- (c) Find the values of Δx and Δk that fulfill $|\Psi(\Delta x, 0)|^2 = (1/e)|\Psi(0, 0)|^2$ and $A(\Delta k) = (1/e)A(k_0)$.
- 2. The wavefunction $\Psi(x,t)$ must be a solution of the time-dependent Schrödinger equation. For a stationary state $|\Psi(x,t)|^2$ is constant in time. $\Psi(x,t)$ is expanded in terms of a set $\{u_n\}$ of eigefunctions of the time independent Hamiltonian:

$$\Psi(x,t) = \sum_{n} c_n \phi_n(t) u_n(x)$$

- (a) Obtain the form of $\phi_n(t)$ by substituting the expansion in the time-dependent Schrödinger equation.
- (b) Find the conditions that must verify the coefficients c_n so that $\Psi(x,t)$ is a stationary state.
- 3. Let E_n the energy eigenvalues of a one-dimensional system and $\psi_n(x)$ the corresponding energy eigenfunctions. Suppose that the normalized wave function of the system at t=0 is given by:

$$\Psi(x, t = 0) = \frac{1}{\sqrt{2}} \exp(i\alpha_1)\psi_1(x) + \frac{1}{\sqrt{3}} \exp(i\alpha_2)\psi_2(x) + \frac{1}{\sqrt{6}} \exp(i\alpha_3)\psi_3(x)$$

(a) Write down the wave function $\Psi(x,t)$ at time t.

- (b) Find the probability that at time t a measurement of the energy of the system gives the value E_2 .
- (c) Does $\langle x \rangle$ vary with time? Does $\langle p_x \rangle$ vary with time? Does $\langle E \rangle = \langle H \rangle$ vary with time?
- 4. Which are the changes in the time-independent Schrödinger equation when a constant potential V_0 is added to the Hamiltonian?
- 5. Consider a free particle in one dimension.
 - (a) Write down the time-dependent Schrödinger equation. Find the general solution and show that it can be interpreted as a sum of plane waves moving in directions +x and -x.
 - (b) Show that the initial conditions can be chosen to obtain a time-independent probability distribution.
 - (c) The probability current density is defined as:

$$\boldsymbol{j}(\boldsymbol{r},t) = \frac{\mathrm{i}\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi)$$

Determine this vector for each plane wave of (a) and for the general solution.

- 6. Let Ψ a normalized solution of the time-dependent Schrödinger equation.
 - (a) Show that the energy can be expressed as:

$$E = \int d^3x \left[\frac{\hbar^2}{2m} \nabla \Psi^* \nabla \Psi + \Psi^* V(\mathbf{r}) \right]$$

(Hint: Use the Green's theorem: $\int_V \nabla \cdot \boldsymbol{j} = \int_A j_n dA$).

(b) Show that the conservation of the energy can be written in the form:

$$\frac{\partial W}{\partial t} + \nabla \cdot \boldsymbol{S} = 0$$

where W is the energy density.