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Abstract

We present a method to ensure the sign-consistency of dynamical couplings between ab initio

three-center wave functions. The method also allows to systematically “diabatize” avoided crossings

between two potential energy surfaces, including conical intersections. Illustrations are presented

for H+
3 , LiH+

2 and NH5+
2 quasimolecules.
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I. INTRODUCTION

The theoretical treatment of atom (ion)-atom (molecule) collisions, at low energies, is

usually carried out by employing a molecular expansion (see e.g. [1]) of the collisional wave

function in terms of the electronic wave functions of the (quasi)molecule formed by the collid-

ing systems. This method involves a first step where one solves the clamped-nuclei electronic

equation in the Born-Oppenheimer approximation to obtain the adiabatic molecular func-

tions (MFs) and potential energy surfaces (PES). Excitation and charge transfer processes

then take place through non-adiabatic transitions between the Born-Oppenheimer states,

induced by the dynamical or non-adiabatic coupling terms. Also, non-adiabatic transitions

are relevant in reactive processes (e.g. F+H2 reaction [2, 3]). PES and couplings are the

required input of the dynamical calculation in both quantal and semiclassical formalisms.

The calculation of MFs may require large configuration interaction (CI) expansions and

the evaluation of non-adiabatic couplings is an important practical aspect for which nu-

merical and analytical techniques have been proposed (see [4] and references therein) and

implemented [5–7]. These couplings can then be modified, by the inclusion of translation fac-

tors [8] (or reaction coordinates in quantal formalisms [9, 10]), to ensure that the expansion

fulfills the appropriate boundary conditions (see e.g. [11, 12]).

In the present paper we address an important practical drawback of the method that

is the erratic sign of the calculated dynamical couplings, which results in that one cannot

directly use them in the dynamical calculations: these couplings show, in general, unphysical

teeth-saw shapes because the overall sign of the MFs is arbitrary; indeed, it depends on the

numerical diagonalization procedure of the Hamiltonian matrix. In practice, this usually

entails a cumbersome study of the couplings and the coefficients of the MFs to ensure a

consistent sign. In this paper we shall describe a method that we have implemented, and

that goes a long way towards solving the problem. This method is based on the use of the

delayed overlap matrix (DOM), whose elements are overlaps between the MFs at neighbor

points of a grid of internuclear distances.

A second practical aspect, which is related to the sign consistency problem, is the presence

of narrow avoided crossings between potential energy curves, where the adiabatic MFs vary

rapidly and one of them changes sign; accordingly, the signs of some couplings change in the

avoided crossing regions. This sign change is physically relevant and may be erroneously
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attributed to an arbitrary change in the MFs.

A third related aspect is that in dynamical treatments one often employs an alternative

diabatic basis. In this respect, several definitions of diabatic states have been proposed (see

e.g. [13] and references therein), and we shall concentrate in this paper on the application

of the abovementioned DOM procedure to decide whether it is convenient to “diabatize” a

particular avoided crossing. It must be noted that our numerical method does not yield a

physical criterion on which avoided crossings must be traversed diabatically (this depends

on the collision energy and on the particular process under study); rather, its aim is to

ascribe consistent signs to the MFs both in adiabatic and diabatic bases. In some cases,

the use of a diabatic basis is indispensable, as when the mechanism involves a single MF

whose PES shows very narrow avoided crossings with those of a series of states. An example

is the N5++H2 collision [14], which is treated by constructing a diabatic MF whose PES

crosses other series which may or may not be included in the expansion. We shall show the

usefulness of this DOM procedure to treat this kind of situations.

For triatomics, the application of the molecular method requires to take into account the

vibro-rotational motion (see reviews in Refs. [15, 16]). At the impact energies where non-

adiabatic transitions take place, molecular rotation is often described in the framework of

the sudden approximation, where the transition probabilities and cross sections are obtained

by averaging over the relative orientation of the internuclear vector of the diatomic (see

Ref. [17]). For the vibrational motion, and at low energies, a close-coupling expansion in

terms of vibronic functions is required, while at higher E (E ≥ 250 eV/amu) [18], simplified

methods based on the use of the sudden approximation can be applied. In all cases, from the

computational point of view, this involves the calculation of MFs and PES in a grid of points

(Ri, ρj, αk), whereR is the ion-diatom relative vector, ρ the diatom internuclear vector and α

the angle betweenR and ρ (Fig. 1). As an example, quantum chemistry calculations required

for He2++H2 collisions have been recently presented in Ref. [19], including a diabatization

of series of avoided crossings between the PES. It was then necessary to ensure that the sign

is consistent over the grid {(Ri, ρj, αk)}.
A singular aspect of the three-center systems is the presence of conical intersections

between the energy surfaces, which have been considered in many publications (see [13] and

references therein). In particular, they are often found in the limit α = 0 (and α = π/2 for

homonuclear targets), where the symmetry of the system increases from Cs to C∞v (or C2v)

3



and some avoided crossings become crossings. The shapes of the dynamical couplings near

a conical intersection have been illustrated in Refs. [20] and [21], where it is shown that a

diabatic basis is required to eliminate the singular couplings.

The paper is organized as follows: In section II we summarize the basic definitions and the

dynamical methods for ion-diatom collisions. In section III we present our method to ensure

the sign consistency of the MFs, and in section IV we explain the diabatization procedure.

Additional illustrations are presented in section V showing the workings of the method in

the treatment of a series of avoided crossings with our example of N5++H2.

II. BASIC EQUATIONS

In a molecular treatment of ion-atom and ion-molecule collisions, the collisional wave

function is expanded in terms of MFs, Φl, which are (approximate) solutions of the Born-

Oppenheimer electronic equation:

HelecΦl(q;Q) = El(Q)Φl(q;Q) (1)

where Helec is the clamped-nuclei electronic Hamiltonian, q and Q denote electronic and

nuclear coordinates, respectively, and El(Q) are the PES. In particular, for the three-center

case, El(R, ρ, α) (see Fig. 1). To solve this equation, one often employs the well known

configuration interaction method (CI), in which the system wave function is expanded as a

linear combination of configurations, ψj:

Φl(q;Q) =
∑

j

cjlψj(q;Q) (2)

Here, the coefficients cjl are obtained variationally from the secular equation:

(Helec − E∆)C = 0 (3)

with Helec and ∆ the Hamiltonian and overlap matrices, whose elements are

Hij =< ψi|Helec|ψj > and ∆ij =< ψi|ψj >. The electronic configurations ψj are spin- and

symmetry- adapted, antisymmetrized products of molecular spin-orbitals (φm)

ψj(q;Q) =
∑

k

djkA(φi, . . . , φn)k (4)

where A is the antisymmetrization operator and k is an index that denotes a given prod-

uct of molecular spin orbitals. In our illustrations, we have applied a multireference CI
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method, where the molecular orbitals have been obtained by means of SCF calculations.

The collisional wave function is then written as a linear combination of the MFs:

Ψ(Q, q) =
∑

l

Fl(Q)Φl(q;Q) (5)

where Fl(Q) are calculated by substituting the expansion (5) in the corresponding full

(dynamical) Schrödinger equation, yielding a set of differential equations that are solved

numerically. Transitions between molecular states are induced by non-adiabatic couplings,

which are the matrix elements of the nuclear gradient operator ∇Q:

Mlm = 〈Φl(q;Q)|X̂ · ∇Q|Φm(q;Q)〉 (6)

where X̂ is a unit vector in any direction of Q-space.

In practice, the PES and couplings are evaluated in a set of nuclear geometries

{Qi, . . . ,QN}, and they are then interpolated at the points needed to numerically solve

the system of differential equations for the functions Fl(Q). In these interpolation nodes,

the couplings can be evaluated numerically to first order in δ, by taking

Mlm(Qi) = δ−1〈Φl(q;Qi)|Φm(q;Qi + δX̂)〉+O(δ2) (7)

The dynamical couplings are then expressed in terms of the DOM between two nearby

points, Qi and Qi + δX̂, which can be evaluated, by modifying the codes (see [6]), using

the first order transition density matrix (Dlm) between these two points [22]:

〈Φl(q;Qi)|Φm(q;Qi + δX̂)〉 = n−1Tr(DlmS∗) (8)

where S∗ is the corresponding DOM in the molecular orbital basis set, and n the number

of electrons of the system.

To calculate the dynamical couplings of Eq. (7), we need to solve Eq. (3) at two different

grid points: Qi and Qi + δX̂. If one employs a basis of real functions, both −Φl and Φl are

solutions of Eq. (1), which means that the sign of Φl(q;Q) is arbitrary, leading to arbitrary

signs of the matrix elements Mlm(Qi). This arbitrariness can be corrected by calculating

the diagonal elements of the DOM:

Ol(Qi) = 〈Φl(q;Qi)|Φl(q;Qi + δX̂)〉 = kl +O(δ2) (9)
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where k is a vector whose components are either +1 or −1 depending on the relative signs

of the MF Φl at Qi and Qi + δX̂. Therefore, we can eliminate the arbitrariness in the sign

of the coupling by taking a corrected, locally sign consistent, coupling:

M s
lm(Qi) = kmMlm(Qi) (10)

III. SIGN CONSISTENCY

The procedure explained above only ensures that dynamical couplings between different

electronic states are sign consistent at a given nuclear geometry, Qi. Now, we are interested

in obtaining sign consistent couplings in a set of nuclear geometries defining a path or a

domain of nuclear configurations. For this purpose, we construct a new set of sign-consistent

molecular states {Φc
l}, as explained below.

Let {Q1, . . . ,QN} be an ordered grid of points along a given path in the nuclear config-

uration space, where the set of adiabatic molecular states {Φj} are known. We assume that

the erratic sign of Φj can only arise in the CI step. That is assured by dividing the interval

[Qi,Qi+1] in subintervals [Q′s,Q
′
s+1] (of lengths, say of about 0.01 a0) and repeating the fast

SCF calculation in the set of points {Q′s}; this allows to obtain sign consistent molecular

orbitals at all grid points by comparing their coefficients.

The first step is the evaluation of the DOM:

Ojj(Qi) =< Φj(Qi−1)|Φj(Qi) > (11)

with i = 2, . . . , N . Since we do not need an accurate value of the DOM of (11), which will be

then rounded off to 0 or ±1, we can employ the first order expression (8) in its evaluation.

Next, we define ni(j, j) from the following mapping:





ni(j, j) = 0 if |Ojj(Qi)− 1| < ε1

ni(j, j) = 1 if |Ojj(Qi) + 1| < ε1

ni(j, j) = 2 otherwise

(12)

where ε1 is a given threshold (0.2 in our calculations). In these expressions, ni(j, j) = 0

means that the state Φj does not change sign when going from Qi−1 to Qi, while ni(j, j) = 1

implies that there was a change of sign. In either case, we define a new MF Φc
j by taking:

Φc
j(Qi) = (−1)ni(j,j)Φj(Qi) (13)
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On the other hand, ni(j, j) = 2 may indicate that there is an avoided crossing between

the energy of Φj and some other state, Φj′ , in the path from Qi−1 to Qi. To check this

possibility, we calculate the delayed overlaps with “energetically-near” states:

Ojj′(Qi) =< Φj(Qi−1)|Φj′(Qi) > (14)

which leads, for each j ′, to the mapping ni(j, j
′):





ni(j, j
′) = 0 if |Ojj′(Qi)− 1| < ε1

ni(j, j
′) = 1 if |Ojj′(Qi) + 1| < ε1

ni(j, j
′) = 2 otherwise

(15)

If ni(j, j
′) 6= 2 for some j ′, we proceed to “diabatize” the crossing:

φcj(Qi) = (−1)ni(j,j
′)φj′(Qi) (16)

This means that the energies of MFs j and j ′ must be exchanged when when going fromQi−1

toQi. Incidentally, Eq. (16) is directly applied when it is necessary to “diabatize” unphysical

avoided crossings that are a consequence of employing a subgroup of the molecular point

group, so that real crossings can appear as sharp pseudocrossings in the calculation. For

example, Cs symmetry is often employed for linear configurations (C∞v) of three-center

systems, where Σ and ∆ configurations belongs to the A′ irreducible representation. Then,

one obtains in these calculations unphysical (very narrow) avoided crossings between Σ and

∆ states; these are crossed by applying (16).

The result ni(j, j
′) = 2 ∀j ′ indicates that Qi is too far from Qi−1 to obtain a DOM

close to 1 for some j ′. In this case, we add an intermediate point to the grid and repeat

the process. Also, if we obtain ni(j, j
′) 6= 2 and we do not want to traverse diabatically the

j−j ′ avoided crossing, additional points must be included in the interval [Qi−1, Qi] in order

to follow smoothly the adiabatic states.

In the new {Φc
j} basis, the corrected couplings M c

lm(Qi), sign-consistent with those at

Qi−1, are:

M c
lm(Qi) = (−1)ni(l,l

′)+ni(m,m′)M s
l′m′(Qi) (17)

where l′ and m′ are those for which ni is either 0 or 1.

In ion-molecule collisions, the required dynamical couplings are the ra-

dial (< Φl|∂Φm/∂R|ρ,α >), rotational (< Φl|∂Φm/∂α|R,ρ >) and vibrational
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(< Φl|∂Φm/∂ρ|R,α >) ones. In Fig. 2, we consider, as a benchmark example, radial

and rotational couplings (panels (b) and (c), respectively) between the two first 1A′ MFs of

H+
3 along the path with ρ = 1.4 a0, α = 60◦ and 1 ≤ R ≤ 8, where the corresponding PES

do not show any avoided crossing (panel (a)). Along this path, we find that ni(j, j) 6= 2 for

j = 1, 2 and ∀i. We can see that the original couplings (symbols) jump erratically, while

those in the {Φc} basis (13) (solid lines) are perfectly smooth.

IV. DIABATIZATION

We now consider the diabatization of a physical avoided crossing. As usual, we start

from the crossing between the energies of two diabatic states {Φd
1, Φd

2} and perform the well

known Smith rotation [23, 24]:




Φd
1

Φd
2


 =




cos θ − sin θ

sin θ cos θ







Φc
1

Φc
2


 (18)

where {Φc
1, Φc

2} are adiabatic states. This yields the well known expression for the trans-

formation angle:

θ =
π

4
+

1

2
tan−1

(
Hd

22 −Hd
11

2Hd
12

)
(19)

where Hd
ij = 〈Φd

i |Helec|Φd
j 〉. The energies of the diabatic states cross at R = R0. Following

the analisis of Ref. [21, 25], for each ρ, and near the avoided crossing, we approximate

Hd
22−Hd

11 by a linear (in R) expression, while the interaction term H12 is assumed independ

of R:

Hd
22 −Hd

11 = R−R0 (20)

2Hd
12 = γ (21)

Here, both R0 and γ vary with α.

Differentiation of eqs. (18) and (19) leads to:

〈Φ1|
∂

∂R

∣∣∣∣∣
α,ρ

|Φ2〉 − 〈Φd
1|

∂

∂R

∣∣∣∣∣
α,ρ

|Φd
2〉 = −1

2

γ

γ2 + (R−R0)2
(22)

〈Φ1|
∂

∂α

∣∣∣∣∣
R,ρ

|Φ2〉 − 〈Φd
1|

∂

∂α

∣∣∣∣∣
R,ρ

|Φd
2〉 =

1

2

γ

γ2 + (R−R0)2

(
(R−R0)

γ

∂γ

∂α
+
∂R0

∂α

)
(23)
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To illustrate the application of the model of Eqs. (22) and (23), we show in Fig. 3 an

example corresponding to an avoided crossing between the energies of states 5 1A′ and 6 1A′

of H+
3 (ρ = 2.06 a0 and α = 60◦). We have plotted in the panel (a) of this figure the

energies of these two states, and in panel (b) the calculated radial and rotational couplings

(symbols) in the adiabatic sign consistent {Φc
i} representation. The solid symbols in the

panel (b) correspond to a sparse distribution of grid points along R. In order to treat this

avoided crossing one has two options: to employ the adiabatic basis or to diabatize the

crossing. The first option involves the integration of the couplings along R and requires a

dense mesh of grid points near the avoided crossing where the couplings vary rapidly. The

second option involves the transformation to a diabatic basis set {Φd
i } using Eqs. (18) and

(19). In this basis, the interaction matrix element < Φd
1|Helec|Φd

2 >, which is easily obtained,

varies smoothly through the crossing region and, for narrow avoided crossings, can often be

neglected at not too low collision energies. Moreover, the dynamical couplings are smooth in

the diabatic basis, which allows us to employ a scarce mesh of grid points for the dynamical

calculation in this basis. Also, the couplings of the diabatic states {Φd
1, Φd

2} with the rest

of states Φc
j, not involved in the crossing, are easily related to those in the adiabatic basis

by means of Eq. (18).

To define the diabatic set, we can fit to Eqs. (22) and (23) the couplings in the adiabatic

basis, evaluated in a sparse grid of points. In this fitting procedure we assume that the

couplings between the diabatic states are constant in the avoided crossing region. This is

shown in Fig. 3, where the solid lines are the result of fitting the couplings evaluated at the

points indicated by solid symbols. The couplings at the intermediate points, indicated by

open symbols, were calculated afterwards to test the precision of the model.

Conical intersections can be treated as particular cases of Eq. (19). Explicitly, for a

conical intersection at α = α0 (α0 = 0 or π/2), γ(α) can be approximated, near the conical

intersection, by

γ(α) ' γ0|α− α0| (24)

In this case, eq. (23) reduces to:

〈Φ1|
∂

∂α

∣∣∣∣∣
R,ρ

|Φ2〉 − 〈Φd
1|

∂

∂α

∣∣∣∣∣
R,ρ

|Φd
2〉 =

1

2

γ0(R−R0) sign(α− α0)

γ2
0(α− α0)2 + (R−R0)2
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+
1

2

γ0|α− α0|
γ2

0(α− α0)2 + (R−R0)2

∂R0

∂α
(25)

The first term of the right hand side of (25), which becomes a pole in the limit α → α0

[21, 25], decreases rapidly when |α−α0| increases. The second term of this equation, which

is negligible for α→ α0 is a Lorentzian-type term similar to that of (22).

In practice, our procedure involves, first, a calculation of the DOM, and secondly, appli-

cation of Eqs. (13) and (16) to obtain sign consistent molecular wave functions, and “diaba-

tizing” avoided crossings whose DOM values are smaller than the threshold ε1. If necessary,

one can then incorporate an additional procedure to properly diabatize the crossings using

the transformation (18). This involves a fitting of the derivative couplings in the avoided

crossing region to expressions (22) and (23), to determine the parameters R0, γ, ∂R0

∂α
and ∂γ

∂α
,

usually assuming that the couplings 〈Φd
1| ∂

∂α

∣∣∣
R,ρ
|Φd

2〉 and 〈Φd
1| ∂

∂R

∣∣∣
α,ρ
|Φd

2〉 are negligible with

respect to those in the adiabatic basis. R0 and γ are non-linear parameters and their fitting

is delicate. Our procedure begins by finding an initial guess for R0 (from the approximate

crossing point of the corresponding energies) and γ, solving Eq. (22), with the approximate

value of R0, at two consecutive grid points next to R0, and taking the common root. Then,

any non-linear fitting routine with initial guess should work properly with Eq. (22). On the

other hand, the linear parameters ∂R0/∂α and ∂γ/∂α are easily obtained by fitting (23)

with a standard least-squared method. In the fittings we use only four points; two at each

side of the avoided crossing.

Our second illustration shows the variation of the PES and couplings, corresponding

to an avoided crossing of LiH2+, with respect to changes in the angle α. In particular,

we have plotted in Fig. 4 the energy differences, radial and rotational couplings between

the second and third 1A′ states of LiH+
2 for several angles. These two states correlate to

H++LiH(X1Σ+) and H(1s)+LiH+(22Σ+) as R increases. One can note in this figure that

there is an avoided crossing that becomes wider as α decreases. Here we have employed

the adiabatic representation, and we have fitted the couplings to expressions (22) and (23)

to show the usefulness of the model. The values obtained for the fitted parameters R0, γ,

∂R0/∂α and ∂γ/∂α are shown in Fig. 5 as a function of α. In this example, ∂R0

∂α
is not

negligible, which leads to a dominant contribution of the second term of Eq. (25) to the

rotational coupling, and this produces its unusual delta-like peak near the avoided crossing

region. For α = 180◦, the nuclear geometry is collinear with the nuclei ordered H-Li-H and,
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when the hydrogen nuclei are equidistant to Li, the avoided crossing becomes a symmetry

induced conical intersection between 1Σ+
g and 1Σ+

u states.

V. SERIES OF AVOIDED CROSSINGS.

The use of automatic sign consistent procedures is very useful when one has to deal with

multiple crossings where “diabatization” is indispensable. As an illustration, we consider

the collision of N5+ with H2 that we have studied in detail in Ref. [14]. In that paper, it

is explained that the PES of the entrance and main exit channels lie above four Rydberg

series, and a block-diagonalization technique is required to evaluate these PES and the

corresponding couplings. After applying the procedure of section III, we obtained the PES

of Fig. 6, where we plot the energies (for α = 45◦ and ρ = 1.4 a0) of the first 30 excited MFs

of symmetry 1A′, relative to that of the ground state, that dissociates in the limit R → ∞
into N4+(3s)+H+

2 (X2Σ+
g ).

The thick line in Fig. 6 is the energy of the collisional entrance channel, which correlates

to N5+(1s2)+H2(X1Σ+
g ); this energy shows avoided crossings for R > 6 a0 with those of

other single and double capture states, and we shall concentrate on the set of avoided

crossings with the energies of the MFs correlating to N3+(3s3l)+H++H+, shown in the

inset of the figure, where we have indicated the grid of R-values of our calculation. These

avoided crossings are so sharp that an adiabatic treatment would require a huge number of

grid points. Accordingly, we have build up a diabatic basis using Eqs. (13) and (16) with

ε1 = 0.2, which leads to the diabatic energies shown in Fig. 6.

To illustrate the couplings between one MF involved in the series of crossings and other

states, we plot in Fig. 7 the radial couplings (absolute values) of the adiabatic states of

the inset of Fig. 6 with the ground state of our calculation (solid symbols). We have also

plotted the coupling between the ground state and the diabatic entrance channel (number

8 in Fig. 6), which shows that a smooth radial coupling is obtained by simply applying

Eqs. (13) and (16). In this example, the radial couplings in the adiabatic basis between

the entrance channel and the states of the series correlating to N3+(3s3l)+H++H+ have

delta-like peaks. In such a case, it is sufficient to use the “diabatization” procedure of (15)

to eliminate the peaks and to obtain smooth couplings in the new basis (see Fig. 7).

Rotational couplings are also corrected applying the procedure of section III. This can
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be seen in Fig. 8, where we have plotted in panel (a) the original couplings (solid symbols)

between the states of the inset of Fig. 7, and in panel (b) the corrected couplings (open

symbols) in the “diabatized” basis set {Φc
i} between states 9, 10 and 11. In panel (b), it can

be appreciated that corrected couplings are composed out of many jumps between different

couplings in the adiabatic basis (here plotted only magnitude and multiplied by −1).

Incidentally, if a grid point happens to be very close to the maximum of a given peak,

then, small absolute values of the DOM are obtained for the states involved in the avoided

crossing. In this case, it is more convenient to remove this point or to move it, in order to

obtain higher values of Ojj′ .

VI. CONCLUDING REMARKS.

We have presented a practical method to evaluate sign-consistent dynamical couplings.

Our use of the term “sign-consistent” implies that couplings calculated at grid points would

evolve into continuous functions as the distance between the grid points is progressively di-

minished. An obvious exception occurs when the adiabatic couplings must be discontinuous:

a well-known instance takes place in the neighborhood of conical intersections [26]; there,

most couplings are continuous functions for any closed path except at a single point, where

they change sign. In this case our procedure yields the same behavior.

The method is based on the use of the DOM, which is easily evaluated by extending

the numerical techniques applied to obtain the couplings, and the method is implemented

for multireference CI wave functions. Since we are interested in determining the relative

sign of the wave functions in two grid points, accurate values of the DOM are not required,

which allows us to employ numerical first order differentiation. The method is particularly

useful in the neighbourhood of avoided crossings between the PES, where it is neccesary to

distinguish between physical (due to the avoided crossing) and unphysical sign changes. It

is important to note that series of avoided crossings appear in practically all ion-molecule

collisions, where the PES of a given MF (usually the collision entrance channel) shows many

avoided crossings with other surfaces. Although a qualitative description of the collision

is simple in terms of diabatic states, and the construction of the corresponding diabatic

surfaces can be carried out by smoothly joining the adiabatic ones, a systematic method

to assign consistent signs to the diabatic MFs is required when they are used in dynamical
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calculations.

The procedure depends on some parameters (ε1, and the distance between grid points)

which are at the users’ disposition. By choosing then, he/she can obtain the sign-consistent

dynamical coupling between the adiabatic states or the residual sign-consistent term between

partially diabatic states. It is possible that, in order to decide which issue is more convenient

in an actual calculation, the user needs to perform calculations with different parameters.

We note that, in this respect, an asset of the method is that it is not 100% automatic and

relies on the users’ criteria. This is why we state in the introduction that the method goes

a long way to “solving the problem”, since the problem depends on the situation and what

is required.

The workings of our method have been illustrated for three-center systems: H+
3 , as a

benchmark system, LiH+
2 , as an example of a system with a marked anisotropy, and NH5+

2 ,

where a closely knit series of avoided crossings appear.
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FIG. 1: Nuclear coordinates for ion-diatom collisions.

FIG. 2: (a) Energies of the first two 1A′ MFs of H+
3 as functions of R for ρ = 1.4 a0 and α = 60◦

(coordinates of Fig. 1. Panels (b) and (c): radial and rotational couplings, respectively, between

the states of panel (a), in the {Φ} (•) and {Φc} (solid line) representations.

FIG. 3: (a) Potential energy curves of the fifth and sixth 1A′ states of H+
3 for ρ = 2.06 a0, α = 60◦.

(b) Radial and rotational couplings between the states of panel (a). The symbols are the calculated

values in the basis {Φc
i}, but only the solid symbols were used in fitting the couplings to the model

of (22) and (23). Solid lines are the model.

FIG. 4: Energy differences (a), radial (b) and rotational (c) couplings between the MFs 2 1A′ and

3 1A′ of LiH+
2 states as functions of R (the distance from the H+ nucleus to the center of mass of

the HLi molecule). The distance H–Li in the target molecule is fixed to 3.04 a0. The values of α

are indicated in panel (b). In panels (b) and (c), the symbols are the ab initio values, while the

lines are the fitted model of Eqs. (22) and (23).

FIG. 5: Fitted parameters of model (19) to the ab initio values of Fig. 4.

FIG. 6: Potential energy curves of the first 30 1A′ states of N5+ + H2 as functions of R with

ρ = 1.4 a0 and α = 45◦. : entrance channel N5+(1s2)+H2(1σ2
g); : double electron

capture channels N3+(3s3l)+H++H+; : other single and double electron capture channels.

In the inset, + mark the grid points.

FIG. 7: Radial couplings between the ground state of NH5+
2 and those in the inset of Fig. 6. Solid

symbols: radial couplings (only magnitude) before applying mapping (15), i. e. in the adiabatic

basis set; open symbols, radial coupling between the entrance channel and the ground state of

NH5+
2 after applying procedure of section III. Straight lines between solid symbols are drawn to

guide the eye.
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FIG. 8: Rotational couplings between some states of the inset of Fig. 6. Panel (a): original

couplings before applying procedure of section III. Panel (b): selected corrected couplings (open

symbols) in the basis {Φc
i}; also, the absolute value of the couplings of panel (a), multiplied by −1,

are plotted (solid symbols). Straight lines between solid symbols are drawn to guide the eye.
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Figure 1, Errea et al, J. Chem. Phys.
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Figure 2, Errea et al, J. Chem. Phys.
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Figure 3, Errea et al, J. Chem. Phys.
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Figure 4, Errea et al, J. Chem. Phys.
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Figure 5, Errea et al, J. Chem. Phys.
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Figure 6, Errea et al, J. Chem. Phys.
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Figure 7, Errea et al, J. Chem. Phys.
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Figure 8, Errea et al, J. Chem. Phys.
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